Школы

Рейтинг на основе отзывов, авторитетности и популярности

Подборки

Полезные и актуальные курсы, отобранные вручную

Теория вероятностей и ее приложения

Сложность
Сложность
Продвинутый
Тип обучения
Тип обучения
Курс
Формат обучения
Формат обучения
С проверкой домашнего задания
Зач. единицы
Зач. единицы
3
Сертификат
Сертификат
Есть

Стоимость курса

бесплатно
Нет рассрочки

На лекциях будут даны базовые математические инструменты анализа реальных жизненных ситуаций и процессов, которые можно закрепить, выполнив практические задания.

В рамках курса будут изучены:

  • понятия дискретного и непрерывного вероятностного пространства;
  • независимость, условная вероятность и связанные с ними формулы (в том числе формула полной вероятности, формула Байеса и т. д.);
  • случайная величина и её свойства; плотность случайной величины, одномерная и многомерная функция распределения;
  • условное распределение случайных величин и способы анализа совместного распределения;
  • математическое ожидание, причем особое внимание будет уделено условному математическому ожиданию;
  • базовые способы анализа больших отклонений; дисперсия, ковариация, коэффициент корреляции и их геометрическая интерпретация;
  • закон больших чисел и центральная предельная теорема.

Приоритетом при составлении курса являлось формирование глубокого понимания используемых в анализе данных вероятностных инструментов. Поэтому все понятия будут подробно рассмотрены с разных сторон, обоснованы и тщательно разобраны в решаемых задачах. Большое количество примеров в курсе тоже служит для этой цели — не просто узнать, а научиться использовать изученную технику.

Что вы получите после обучения

Навыки
1
Теория вероятностей
2
Анализ данных

Школа

Национальный исследовательский университет «Высшая школа экономики» — исследовательский университет, осуществляющий свою миссию через научно-образовательную, проектную, экспертно-аналитическую и социокультурную деятельности на основе международных научных и организационных стандартов.

Мы осознаем себя частью мирового академического сообщества, считаем международное партнерство, вовлеченность в глобальное университетское взаимодействие ключевыми элементами нашего движения вперед. Будучи российским университетом, мы работаем на благо России и ее граждан.

Наш университет — это коллектив ученых, сотрудников, аспирантов и студентов, которых отличает внутренняя приверженность к поддержанию высоких академических стандартов своей деятельности. Мы стремимся обеспечить наиболее благоприятные условия для развития каждого члена нашего коллектива. 

Наши ценности:

  • Стремление к истине
  • Сотрудничество и заинтересованность друг в друге
  • Честность и открытость
  • Академическая свобода и политический нейтралитет
  • Профессионализм, требовательность к себе и ответственность
  • Активная общественная позиция

Сегодня Высшая школа экономики — это:

  • 4 КАМПУСА: МОСКВА, САНКТ-ПЕТЕРБУРГ, НИЖНИЙ НОВГОРОД, ПЕРМЬ
  • ~7000ПРЕПОДАВАТЕЛЕЙ И ИССЛЕДОВАТЕЛЕЙ
  • 50 400+СТУДЕНТОВ
  • 100 800ВЫПУСКНИКОВ

Новый элемент системы российского образования — открытые онлайн-курсы — cможет перезачесть любой университет. Мы делаем это реальной практикой, расширяя границы образования для каждого студента. Полный набор курсов от ведущих университетов. Мы ведём системную работу по созданию курсов для базовой части всех направлений подготовки, обеспечивая удобное и выгодное для любого университета встраивание курса в свои образовательные программы
«Открытое образование» – это образовательная платформа, предлагающая массовые онлайн-курсы ведущих российских вузов, которые объединили свои усилия, чтобы предоставить возможность каждому получить качественное высшее образование.

Любой пользователь может совершенно бесплатно и в любое время проходить курсы от ведущих университетов России, а студенты российских вузов смогут засчитать результаты обучения в своем университете.

Преподаватели

Должность: Академический руководитель образовательной программы "Компьютерные науки и анализ данных"

Программа курса

1. Классическая и дискретная вероятность

Изучение теории вероятностей мы начнем с естественного вопроса: как мы понимаем, что такое вероятность? На первой неделе мы будем понимать вероятность как частоту, с которой наступает то или иное событие. Для формирования понимания основных принципов вероятности и быстрого старта нам пригодится мощный инструмент — понятие дерева событий. Сначала мы будем использовать его без строгого обоснования, но понимая принцип действия. 

На второй неделе мы обоснуем дерево событий, используя более развитую технику. Без промедления мы введем самое часто используемое понятие теории вероятностей — случайную величину. Это понятие мы сразу используем для работы со стандартной моделью — схемой Бернулли. Завершает неделю распределение Пуассона, которое самым тесным образом связано со схемой Бернулли. Распределение Пуассона используется для описания потока запросов систем массового обслуживания. Так что уже в конце первой недели у Вас будет богатый набор примеров применения вероятностных моделей на практике.

2. Условная вероятность и независимость

 С понятием «условная вероятность»будет связан материал второй недели. Мы будем изучать, как события взаимосвязаны. Чтобы использовать информацию о взаимосвязи событий используют теоремы умножения и формулу полной вероятности, которые будут сформулированы в середине недели. Непрерывная случайная величина

До этого момента мы еще не рассматривали вероятностные пространства, в которых каждый отдельный исход имеет нулевую вероятность. На этой неделе мы узнаем, как можно определить и применять непрерывные случайные величины. Теоретическим фундаментом нам будет служить аксиоматика А. Н. Колмогорова — великого математика и основателя современной теории вероятностей.

3. Математическое ожидание

Большинство объектов, которые необходимо проанализировать, описываются случайной величиной. Но как оценить саму случайную величину? Одной из важнейших числовых характеристик случайной величины является математическое ожидание. Более того оказывается, что в некоторых ситуациях знание математического ожидания позволяет оценить значения случайной величины и сделать крайне полезные наблюдения. Именно этому разделу науки будет посвящена третья часть наших занятий. 

4. Дисперсия и ковариация

Узнаем о значении дисперсии случайной величины, которая позволяет провести гораздо более точный анализ ситуации. Кроме того, мы узнаем, какие методы позволяют оценить зависимость между случайными величинами. 

Рейтинг курса

4.2
Может быть интересно
Теория вероятностей и ее приложения
Пройти курс бесплатно

Теория вероятностей и ее приложения

Курс находится на модерации. Данные могут быть неактуальны.