Лайфхакер
Лайфхакер
Лучшее
Рубрики
Рецепты
Подкасты
Сервисы
Колонки
Лучшее
Рубрики
Рецепты
Подкасты
Сервисы
Колонки
Рецепты на Масленицу
Новости
Здоровье
Спорт и фитнес
Покупки
Технологии
Отношения
Кино
Реклама
Технологии
13 октября 2016

Что такое машинное обучение и почему оно может лишить вас работы

Новые алгоритмы позволяют компьютерам решать задачи, которые раньше были под силу только человеку. С одной стороны, это принесёт нам огромную пользу, с другой — новые вызовы для каждого из нас. Чтобы прогресс не застал вас врасплох, будьте начеку и следите за ситуацией.
Фото автора Max Volotsky
Max Volotsky

Что такое машинное обучение и почему оно может лишить вас работы

До недавних пор программистам приходилось писать сложные и очень точные инструкции даже для того, чтобы компьютеры могли выполнять самые простые задачи.

Языки программирования всегда развивались, но самым значительным достижением в этой области стало упрощение работы с кодом. Теперь компьютеры можно не программировать как раньше, а настраивать таким образом, чтобы они обучались сами.

Этот процесс, названный машинным обучением, обещает стать настоящим технологическим прорывом и может повлиять на любого человека, независимо от сферы его деятельности. Поэтому разобраться в теме будет полезно каждому из нас.

Что такое машинное обучение

Машинное обучение избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему. Вместо этого компьютер учат находить решение самостоятельно. По сути, машинное обучение — это очень комплексное применение статистики для поиска закономерностей в данных и создания на их основе нужных прогнозов.

История машинного обучения началась ещё в 1950‑е годы, когда информатикам удалось научить компьютер играть в шашки. С тех пор вместе с вычислительной мощностью росла сложность закономерностей и прогнозов, которые компьютер способен распознать и составить, а также проблем, которые он может решить.

Сначала алгоритм получает набор обучающих данных, а затем использует их для обработки запросов. К примеру, вы можете загрузить в машину несколько фотографий с описанием их содержимого вроде «на этом фото изображён кот» и «на этом фото нет кота». Если после этого добавить в компьютер новые изображения, он начнёт определять снимки с котами уже самостоятельно.

машинное обучение: кот
Quantamagazine.org

Алгоритм продолжает совершенствоваться. Верные и ошибочные результаты распознавания попадают в базу данных, и с каждым обработанным фото программа становится умнее и всё лучше справляется с поставленной задачей. В сущности, это и есть обучение.

Почему машинное обучение — это важно

Теперь машины можно смело применять в областях, которые раньше считались доступными только человеку. Хотя технологии все ещё далеки от идеала, суть в том, что компьютеры постоянно улучшаются. Теоретически, они могут развиваться бесконечно. В этом основная идея машинного обучения.

Машины учатся видеть изображения и классифицировать их, как в вышеупомянутом примере с фото. Они могут распознавать текст и числа на этих изображениях, а также людей и места. Причём компьютеры не просто выявляют написанные слова, но и учитывают контекст их употребления, включая позитивные и негативные оттенки эмоций.

Помимо прочего, машины могут слушать нас и отвечать. Виртуальные ассистенты в наших смартфонах — будь то Siri, Cortana или Google Now — воплощают прорывы в машинной обработке естественного языка и продолжают развиваться.

машинное обучение: Siri
Ibtimes.co.uk

Кроме того, компьютеры учатся писать. Алгоритмы машинного обучения уже генерируют новостные статьи. Они могут писать о финансах и даже спорте.

Такие функции могут изменить все виды деятельности, основанные на вводе и классификации данных, которые раньше были под силу только человеку. Если компьютер может распознать изображение, документ, файл или другой объект и точно описать его, это открывает широкие возможности для автоматизации.

Как машинное обучение применяют сегодня

Алгоритмы машинного обучения уже способны впечатлить.

Компания Medecision использует их, чтобы вычислять факторы риска для различных заболеваний в больших населённых пунктах. Например, алгоритм определил восемь переменных, с помощью которых можно заключить, нуждается больной диабетом в госпитализации или же нет.

После поисков нужного товара в онлайн-магазинах вы могли замечать, что видите в интернете рекламу этого продукта ещё долгое время. Такая маркетинговая персонализация является только вершиной айсберга. Компании могут автоматически рассылать электронные письма, купоны, предложения и отображать рекомендации, подобранные под каждого клиента индивидуально. Все это более аккуратно подталкивает потребителя к покупке.

Обработке естественного языка находят разное применение во множестве сфер. Например, с её помощью заменяют сотрудников в службах поддержки, чтобы быстрее выдавать необходимую информацию пользователям. Кроме того, подобные алгоритмы помогают юристам в расшифровке сложной документации.

Недавно IBM опросиларуководителей автомобильных компаний. 74% из них ожидают появления на дорогах умных машин уже к 2025 году.

Такие автомобили будут получать информацию о владельце и своём окружении с помощью интернета вещей. На основе этих данных они смогут менять параметры температуры, аудио, позицию кресла и другие настройки автоматически. Умные машины также будут сами решать возникающие проблемы, самостоятельно водить и давать рекомендации с учётом трафика и дорожных условий.

Чего ждать от машинного обучения в будущем

Возможности, которые открывает перед нами машинное обучение в будущем, практически безграничны. Вот несколько впечатляющих примеров.

  • Персонализированная система здравоохранения, предоставляющая пациентам индивидуальную медицинскую помощь с учётом их генетического кода и образа жизни.
  • Защитные программы, которые с высочайшей точностью вычисляют хакерские атаки и вредоносное ПО.
  • Компьютеризированные системы безопасности для аэропортов, стадионов и других подобных мест, выявляющие потенциальные угрозы.
  • Самоуправляемые автомобили, которые ориентируются в пространстве, минимизируют количество пробок и аварий на дорогах.
  • Продвинутые системы защиты от мошенников, способные обезопасить деньги на наших счетах.
  • Универсальные переводчики, которые позволят нам получать точный и быстрый перевод с помощью смартфонов и других умных устройств.

Почему вам стоит следить за машинным обучением

Хотя многие ощутят перечисленные возможности с приходом новых технологий, большинство не захочет разбираться в том, как всё это работает изнутри. Но всем нам лучше оставаться начеку. Ведь вместе со всеми благами дальнейший прогресс принесёт ощутимые последствия для рынка труда.

Машинное обучение на основе постоянно растущего количества данных, которые генерирует почти каждый человек на Земле, полностью изменит профессии. Конечно, эти инновации упростят работу многих людей, но будут и те, кого они лишат работы. Ведь алгоритмы уже отвечают на письма, интерпретируют медицинские снимки, помогают в судебных процессах, анализируют данные и так далее.

Машины учатся на собственном опыте, поэтому программистам больше не нужно писать код для каждой нестандартной ситуации. Эта способность к обучению вместе с развитием робототехники и мобильных технологий позволит компьютерам справляться со сложными задачами лучше, чем когда-либо раньше.

Но что случится с людьми, когда их превзойдут машины?

По даннымВсемирного экономического форума, в течение следующих пяти лет компьютеры и роботы займут пять миллионов рабочих мест, которые сейчас принадлежат людям.

Таким образом, нам нужно следить за тем, как машинное обучение меняет рабочий процесс. И неважно, кто вы: юрист, медик, сотрудник службы поддержки, водитель грузовика или кто-то ещё. Перемены могут коснуться каждого.

Лучший способ избежать неприятного сюрприза, когда компьютеры начнут отбирать рабочие места, — мыслить превентивно и готовиться.

Источник: Cheat Sheet: 5 Things Everyone Should Know About Machine Learning
Если нашли ошибку, выделите текст и нажмите Ctrl + Enter

Лучшие предложения

Забираем дебетовку «Т-банка» с 2 000 баллов и повышенным кешбэком на автоуслуги

Забираем дебетовку «Т-банка» с 2 000 баллов и повышенным кешбэком за автоуслуги

Непромокаемые кроссовки от Li-Ning

Кроссовки от Li-Ning, которые не боятся слякоти, отдают со скидкой 37%

Три необычных продукта, которые точно стоит попробовать во «ВкусВилле»

Три необычных продукта, которые точно стоит попробовать во «ВкусВилле»

Находки AliExpress: самые интересные и полезные товары недели

Находки AliExpress: самые интересные и полезные товары недели

Нескользящий коврик для йоги

Нескользящий коврик для йоги, на который можно залипнуть после тренировки

7 надёжных камер для безопасности людей и питомцев

7 надёжных камер для безопасности людей и питомцев

100 otlichnyh podarkov mame na den' rozhdeniya

100 отличных подарков маме на день рождения

15 классных вещей, которые стоит купить у российского бренда Muted

15 классных вещей, которые стоит купить у российского бренда Muted

Это интересно
РОЦИТ: 2026 год изменит правила игры для бизнеса в сфере кибербезопасности

РОЦИТ: 2026 год изменит правила игры для бизнеса в сфере кибербезопасности

Культурный челлендж: 6 способов получить новые впечатления в этом году

Культурный челлендж: 6 способов получить новые впечатления в этом году

Правда ли, что диабет молодеет? Разбираемся с эндокринологом

Правда ли, что диабет молодеет? Разбираемся с эндокринологом

Три необычных продукта, которые точно стоит попробовать во «ВкусВилле»

Три необычных продукта, которые точно стоит попробовать во «ВкусВилле»

Комментарии
Егор Нестеров
14.10.16 00:59
Искусственный интеллект, машинное обучение, квантовые компьютеры - и прочие тесно связанные друг с другом вещи - это все, конечно, возможно и будет. Но все-таки не в наш век. Так что переживать особо не стоит. Лишиться рабочего места можно и из обычной оптимизации процесса - автоматизации, внедрения различных ИС у вас на работе и прочего. Девочки, печатающие документы, менеджеры по продажам товара, который можно купить онлайн ( а купить онлайн можно почти все) - все это реальность уже сегодняшнего дня и последних лет. А про состояние экономики и прочие факторы, влияющие на все это - уж молчим. ?
Максим Волоцкий
14.10.16 09:37
Смелое высказывание, особенно на фоне обсуждений безусловного дохода в высших политических кругах и прогнозов футурологов насчет искусственного интеллекта, сингулярности и прочего)
Sergio Samsonov
21.10.16 09:55
Самая большая проблема большинства разработчиков ИИ - это боязнь перед СИИ и "восстанием машин", если не будут разработаны методы и подпрограммы защиты. А уж культ Busy Child вообще порой звучит нереалистично. Единственно НО, все эти люди так и продолжают работать над созданием и улучшением ИИ. Стелс-компании от тех же Google, Microsoft, Apple, DARPA и тд. занимаются созданием сверхмощных систем обработки информации и аналитического мышления на подобие человеческого. Вся суть проста. Мы люди, действуя порой иррационально, т.к. основываемся на личном опыте, не можем 100% сказать, как будет развиваться технология ИИ. Основные варианты: Они нас убьют или они будут как мы. Что по сути конец homo sapiens, как вида. И это прогнозируют в ближайшие лет 30-40. Я не могу сказать к чему это все приведет, но симбиоз человек-машина это 100% будет, ведь гаджеты это уже часть нас.
Александр Кондраков
14.10.16 08:17
И хорошо, что такие технологии появляются. Люди рождены не для того чтобы работать, тем более на кого-то.
Что вы могли пропустить
Apple анонсировала мартовскую презентацию — на ней могут представить недорогой MacBook и iPhone 17e
Apple анонсировала мартовскую презентацию — на ней могут представить недорогой MacBook и iPhone 17e
0
Вчера
Новости
Устройства
8 способов подключить телефон к телевизору
8 способов подключить телефон к телевизору
0
Вчера
Ликбез
Устройства
Названы устройства Xiaomi, Redmi и Poco, которые получат Android 17 — в списке более 70 моделей
Названы устройства Xiaomi, Redmi и Poco, которые получат Android 17 — в списке более 70 моделей
0
Вчера
Android
Новости
Как полностью удалить файлы на iPhone
Как полностью удалить файлы на iPhone
0
15 февраля
iOS
Ликбез
В Microsoft назвали точные сроки, когда ИИ сможет заменить офисных сотрудников — скоро
В Microsoft назвали точные сроки, когда ИИ сможет заменить офисных сотрудников — скоро
0
14 февраля
Новости
Технологии
Samsung Galaxy S26 и S26+ показали на фото со всех сторон
Samsung Galaxy S26 и S26+ показали на фото со всех сторон
0
14 февраля
Новости
Устройства
Как скачать видео с любого сайта без дополнительных программ: 10 универсальных сервисов
Как скачать видео с любого сайта без дополнительных программ: 10 универсальных сервисов
0
14 февраля
Веб-сервисы
Ликбез
Бюджетный iPhone 17e показали на рендерах — его могут выпустить в феврале
Бюджетный iPhone 17e показали на рендерах — его могут выпустить в феврале
0
13 февраля
Новости
Устройства
Дублинский стартап создал «парктроник» с ИИ для велосипедистов
Дублинский стартап создал «парктроник» с ИИ для велосипедистов
0
13 февраля
Новости
Устройства
Sony впервые за три года выпустила флагманские TWS‑наушники
Sony впервые за три года выпустила флагманские TWS‑наушники
0
13 февраля
Новости
Устройства
Как сделать парное фото на 14 февраля с кем угодно: 20 промптов
Как сделать парное фото на 14 февраля с кем угодно: 20 промптов
0
13 февраля
Ликбез
Технологии
В Сети вирусится бой Тома Круза и Брэда Питта — это ролик нейросети Seedance 2.0, удивившей даже кинематографистов
В Сети вирусится бой Тома Круза и Брэда Питта — это ролик нейросети Seedance 2.0, удивившей даже кинематографистов
0
13 февраля
Новости
Технологии
В пару кликов: как удалить тяжёлые письма в Gmail и освободить место на «Google Диске»
В пару кликов: как удалить тяжёлые письма в Gmail и освободить место на «Google Диске»
0
12 февраля
Технологии
Технологии
Xiaomi выпустила бюджетный аналог AirTag, который работает с сетями Apple и Google
Xiaomi выпустила бюджетный аналог AirTag, который работает с сетями Apple и Google
0
12 февраля
Новости
Устройства
«Белый список» сайтов и приложений в России: что в него входит и как пользоваться
«Белый список» сайтов и приложений в России: что в него входит и как пользоваться
0
12 февраля
Ликбез
Технологии

Новые комментарии

Аватар автора комментария
Horugvi7 часов назад

+1 / 0

Господи, даже голых сисек нет. А разговоров-то было...
«Грозовой перевал» с Марго Робби — пошлая смесь «Бриджертонов» и «50 оттенков серого»
Аватар автора комментария
Alexandr Al7 часов назад

0 / 0

это арифметика - лишние 1000 ккал в день, это примерно + 1 кг веса в неделю. если не есть больше нормы, то килограммы из пустоты не возьмутся.
Правда ли, что лапша быстрого приготовления вредит здоровью
Аватар автора комментария
Andy Clement7 часов назад

0 / 0

Кому надо тот купит, кому не надо можно и по 7 лет ходить с одним, просто батарею менять
В Сети сравнили фото с iPhone 6s и iPhone 17 Pro — разницу увидели не все
Аватар автора комментария
Ник8 часов назад

0 / 0

Сейчас люди уже стараются снимать на новых площадках без посредников, чтобы не переплачивать процент и заранее проговорить можно было обсудить все, такие как Ариви.ру, Посуточно-СДК
На замену Booking и Airbnb: 11 сервисов для поиска отелей и квартир в России
T2 вновь дарит подарки на Новый год. Три причины, почему вам об этом стоит знать (даже если вы не клиент)

T2 вновь дарит подарки на Новый год. Три причины, почему вам об этом стоит знать (даже если вы не клиент)

Лайфхакер
Информация
О проектеРубрикиРекламаРедакцияВакансииДля начинающих авторовО компании
Подписка
TelegramВКонтактеTwitterViberYouTubeИнициалRSS
Правила
Пользовательское соглашениеПолитика обработки персональных данныхПравила применения рекомендательных технологийПравила сообществаСогласие на обработку персональных данныхСогласие для рекламных рассылокСогласие для информационной программы
18+Копирование материалов запрещено.
Издание может получать комиссию от покупки товаров, представленных в публикациях