О чём говорят характеристики камер смартфонов и можно ли им доверять

Лайфхакер рассказывает, как разобраться в десятках мегапикселей и разных фокусных расстояниях.

На заре становления смартфонов выделялась отдельная категория — камерофон: в этих гаджетах камере уделялось максимум внимания. Сейчас же каждая флагманская модель практически любого бренда старается привлечь внимание наиболее сложной и интересной реализацией камеры. Характеристики устройств маскируются громкими словами, смелыми слоганами, огромными цифрами и собственными названиями технологий. Но можно ли в них вычитать что‑нибудь полезное и понять, способна ли эта камера выдать достойное изображение? Сейчас разберёмся.

👌 В телеграм-канале «Лайфхакер» лучшие статьи о том, как сделать жизнь проще.

Основные характеристики камер смартфонов

Характеристики камеры смартфона по сути не отличаются от характеристик любой цифровой камеры. Но нужно понимать, за что отвечает тот или иной параметр.

Мегапиксели

Именно им в рекламных кампаниях производители уделяют больше всего внимания. Пиксель — это светочувствительный элемент на сенсоре камеры, или фотодиод. Он состоит из четырёх субпикселей, каждый из которых за счёт светофильтров пропускает только свет своего оттенка. Чаще всего это красный, синий и зелёный. Из комбинации этих цветов и получается точка необходимого оттенка и нужной яркости.

Некоторые производители отходят от наиболее популярной схемы и к светофильтрам красного, синего и зелёного цветов добавляют белый или жёлтый. В таком случае фотодиод улавливает больше света и изображения получаются более яркими.

Мегапиксели показывают, с каким разрешением камера способна снимать фотографии, то есть из скольки миллионов пикселей будет состоять конечное изображение.

Сегодня многие производители представляют смартфоны с камерами на 48, 64 или 108 Мп, которые работают в режиме объединения точек. В таких сенсорах пиксели состоят не из четырёх, а из 16 субпикселей, объединённых по четыре. Если в классическом сенсоре, например, один пиксель состоит из одного синего, двух зелёных и одного красного субпикселя, то в камерах с высоким разрешением он состоит из четырёх синих, восьми зеленых и четырёх красных субпикселей.

Изображение: Алина Ранд / Лайфхакер

За счёт увеличения числа пикселей повышается светочувствительность и вырастает динамический диапазон изображения — разница между самым тёмным и самым светлым участком на фотографии. Но при этом камеры на 48 Мп за счёт такого объединения по факту создают изображения с разрешением в 12 Мп. И тут нет ничего плохого: это тот случай, когда количество переходит в качество, и снимков с разрешением 4 000 × 3 000 (те самые 12 Мп) вполне достаточно для публикации в соцсетях.

Размер сенсора

Пожалуй, это самый важный элемент камеры смартфона. Размер сенсора показывает, на какой площади расположились светочувствительные диоды. Чем крупнее сенсор, тем больше могут быть сами пиксели, а чем больше пиксель, тем лучше он улавливает свет. Типичные размеры пикселей в современных сенсорах мобильных камер — от 0,8 до 2,4 мкм, правда, последний как раз и достигается объединением субпикселей, о котором мы рассказали в предыдущем пункте.

Чем больше света может поймать сенсор, тем лучше будут изображения, созданные камерой. Особенно это важно при съёмке в условиях плохого освещения. И в такой ситуации может оказаться, что сенсор с меньшим числом более крупных пикселей выдаст изображение качественнее, чем сенсор с большим числом менее крупных пикселей, потому что каждый фотодиод поймал больше света и, соответственно, больше информации.

То есть камера, у которой в характеристиках указано меньше пикселей, может превзойти по качеству камеру с огромным числом пикселей за счёт того, что сами пиксели крупнее.

В современных смартфонах габариты сенсоров указываются в дробных частях дюйма. Самый крупный сенсор — 50‑мегапиксельный Samsung ISOCELL GN2 — установлен в Xiaomi Mi 11 Ultra: его диагональ составляет 1/1,12 дюйма.

Изображение: Xiaomi

Объективы

Немалое влияние на качество изображения оказывают используемые объективы. Они состоят из линз — прозрачных пластинок с определёнными оптическими свойствами. Основная функция линзы — правильным образом исказить попадающий на неё луч света. Тип искажения зависит от формы пластины.

Объективы чаще всего состоят из нескольких линз, поскольку одной недостаточно. Между собой чередуются выгнутые и вогнутые линзы разной плотности. Их правильный подбор и расположение в объективе влияют на чёткость изображения и контрастность. С кривыми линзами можно получить оптические искажения. В некоторых линзах, например широкоугольных, искажения, наоборот, стали стилистической особенностью. Правда, некоторые устройства программно их корректируют на этапе постобработки.

В современных смартфонах модули камер состоят из нескольких объективов, у каждого из которых свой сенсор, подходящий под определённую задачу. Чаще всего это стандартный, широкоугольный и макрообъектив. При этом нельзя сказать, что смартфоны с несколькими объективами снимают заведомо лучше, чем с одним: это зависит от реализации конкретного устройства. Может случиться так, что среди множества камер в одном модуле ни одна не даст приемлемого результата и количество не перейдёт в качество.

Фокусное расстояние и апертура

Чем ниже фокусное расстояние, тем выше угол обзора объектива, и наоборот — объективы с высоким фокусным расстоянием снимают далеко, но при этом с малым углом обзора.

Апертура показывает, сколько света попадает на сенсор камеры через линзу. У большинства смартфонов апертура фиксированная, она представляет собой соотношение фокусного расстояния к размеру входного отверстия камеры.

Чем больше света попадает на сенсор и чем больше входное отверстие камеры, тем меньше глубина резкости, то есть в фокусе будет только объект съёмки, а фон за ним будет размыт.

Чтобы увеличить глубину резкости, нужно уменьшить входное отверстие, правда, с этим понизится и яркость. В смартфонах это чаще всего достигается программным образом. Однако в современных устройствах используются модули с несколькими объективами — с линзами разных размеров, разными фокусными расстояниями и апертурами. Поэтому вместо того, чтобы полагаться на программную обработку, можно переключаться между объективами.

Изображение: HTC

Сегодня смартфоны оснащены продвинутыми системами автоматической фокусировки. Например, в технологии PDAF часть точек на сенсоре камеры используется в качестве фокусных. Два находящихся рядом пикселя расположены так, что один из них воспринимает световой поток, идущий сверху, а другой — снизу, и система корректирует фокусировку в том случае, если на пиксели падает разное количество света.

Система фокусировки Sony 2×2 OCL. Изображение: Sony

Также есть лазерная и автофокусировка, основанная на контрастности. Некоторые компании используют в камерах технологии, которые позволяют фокусироваться на конкретных объектах в кадре, например распознают лица и делают их более чёткими.

Зум

Зум показывает, насколько можно приблизить изображение. Существуют два варианта зума: цифровой и оптический. Цифровой попросту увеличивает и обрезает полноразмерное изображение. Оптический же для увеличения использует специальные объективы, которые за счёт правильной системы линз могут смотреть далеко.

С развитием камер в смартфонах всё чаще начали появляться модули с оптическим зумом — обычно 2X или 3X. Однако есть и варианты, которые производители называют перископами. Такие объективы используют систему из линз и зеркал, расположенных в корпусе смартфона боком, и за счёт них можно получить, например, пятикратный зум. То, насколько сильно можно приблизить изображение, зависит от фокусного расстояния.

Изображение: Huawei

Максимальный оптический зум, который сегодня предлагают смартфоны, — 10‑кратный. Он встречается в Huawei P40 Pro+ (именно в нём использован тот самый «перископ») и в отдельных объективах Samsung Galaxy S21 Ultra. Для тех случаев, когда такой сильный зум не нужен, у этих смартфонов также предусмотрены объективы с меньшим увеличением — трёхкратным.

Вспомогательные датчики

Датчики света, глубины, дальномеры, лидары — все эти системы помогают смартфону понять, где расположены фотографируемые объекты, как они освещены, двигаются или нет. Полученные данные смартфон использует и в видоискателе, и в процессе постобработки, достраивая и редактируя изображение.

Разрешение датчиков далеко не самый важный параметр: для качественного выполнения своих функций им достаточно совсем небольшого количества пикселей. Поэтому не стоит удивляться, увидев, например, датчик глубины с разрешением 2 Мп: для его работы их хватает.

Разрешение и частота кадров видео

Разрешение видео показывает, сколько пикселей будет содержаться в одном кадре. А частота кадров — сколько таких кадров в секунду будет снято.

С ростом пикселей улучшается детализация и чёткость изображения. С увеличением частоты кадров уменьшается эффект размытия, видео выглядит чётче и лучше воспринимается человеческим глазом. Более того, видео, снятое с высокой частотой кадров, затем можно замедлить до привычных 24 кадров в секунду и получить интересный эффект слоу‑мо.

HDR

HDR означает «высокий динамический диапазон», то есть большую разницу между самыми тёмными и самыми светлыми участками изображения. Камера в HDR‑режиме делает несколько снимков (в случае съёмки видео — кадров) с разной экспозицией и потом их объединяет, балансируя светлые и тёмные участки. За счёт этого удаётся достичь более высокой контрастности и детальности изображения.

Магия постобработки

Сухие характеристики камер смартфонов, конечно, путают и пугают. А самая главная проблема заключается в том, что понять исключительно по этим цифрам, как будет снимать камера смартфона, нереально.

Помимо самой системы объективов и сенсоров вокруг камеры есть ещё обвязка из процессора обработки изображений и ПО постобработки — алгоритмов, анализирующих полученные данные и применяющих различные фирменные улучшайзеры. В итоге у компаний, использующих одни и те же сенсоры, из‑за разных систем постобработки могут получаться абсолютно разные изображения.

У каждого производителя свой подход к цветопередаче и анализу границ предметов. Каждая компания использует различные фишки и технологии для того, чтобы получить в итоге такое изображение, которое соответствует их чувству прекрасного. Некоторые бренды используют машинное обучение для правильного определения предметов в кадре и того, как они в идеале должны выглядеть, и это всё тоже входит в обработку.

Возьмём простой пример среди достаточно популярных смартфонов. У Realme 7 Pro и Samsung Galaxy M51 основные камеры построены на одних и тех же сенсорах — Sony IMX682. Это 64‑мегапиксельный сенсор, работающий по системе объединения субпикселей Quad Bayer и выдающий изображение разрешением в 16 Мп (но также способный работать и в полноразмерном режиме). Несмотря на то что сенсоры у них одинаковые, сами изображения получаются совершенно разными.

Изображение: Realme, Samsung

Цветопередача Samsung при дневном освещении более сочная, яркая, хоть и без излишней перенасыщенности. Фотографии с Realme 7 Pro получили чуть более мягкую и реалистичную гамму, но иногда в них теряются границы мелких деталей, например отдельных травинок, снятых относительно далеко. У Samsung же система постобработки и избавления от шумов определяет границы чётче, что, правда, иногда создаёт ощущение искусственности. Перепутать фотографии, снятые на эти телефоны, не выйдет, несмотря на одинаковые сенсоры.

Как работает постобработка изображений на конкретном телефоне, нельзя понять по характеристикам. Здесь помогут только обзоры профессионалов с тестовыми фотографиями, снятыми в различных режимах.

Нет веры мегапикселям

Характеристики не гарантируют качественного изображения. Нельзя утверждать, что камера на 108 Мп будет снимать лучше, чем камера на 64 Мп, потому что помимо мегапикселей на результате сказываются и другие параметры камеры.

Первым делом стоит обращать внимание на размер сенсора: чем он крупнее, тем больше света он получает, а от количества света напрямую зависит качество изображения. Следом по важности идёт железная часть системы постобработки изображения, а затем — ПО. Как они работают, можно понять, только увидев фотографии, снятые телефоном с этой системой.

Единственный вариант — довериться обзорам, в которых публикуются тестовые фотографии в разных условиях съёмки: при разном освещении, в движении, на разном расстоянии и так далее. И не стоит забывать о том, что главные инструменты фотографа и оператора — это прямые руки и умение поймать момент. А остальное вторично.

Это упрощённая версия страницы.

Читать полную версию
Обложка: Kicking Studio / Shutterstock
Если нашли ошибку, выделите текст и нажмите Ctrl + Enter
Александр Можеванов
15.05.21 13:02
Отличная статья! Побольше бы подобных))